Medida indirecta tipo interior

1. Definición

Es aquella en la cual las señales de corriente y de tensión se llevan al medidor a través de transformadores cuyos devanados primarios están conectados en el nivel de tensión de la acometida de alimentación de media tensión. (13.2 kV y 35.4 kV)

2. Reglamentos y normas

- 2.1 El Sistema de medida directa debe cumplir con el Reglamento Técnico de Instalaciones Eléctricas RETIE con la norma NTC 2050 y con el código de medida Resolución CREG 038/2014)
- 2.2 Los equipos de medición de energía eléctrica deben cumplir con los siguientes normas:

Medidores con clases de precisión 1 y 2 deben cumplir NTC 4052 / IEC 62053-21.

Medidores estáticos de energía activa Clases 0,2S y 0,5S NTC 2147/ (IEC 62053-22)

Medidores estáticos de energía reactiva Clases 2 y 3 NTC 4569/ IEC 62053-23)

Medidores electromecánicos de energía activa (Clases 0,5, 1 y 2). NTC 2288 IEC 62053-11

2.3 La calibración de medidores debe realizarse de acuerdo a los requisitos contenidos en la norma NTC-ISO-IEC 17025.

3. Generalidades.

- 3.1 Se puede hacer medición indirecta cuando el usuario requiera acceder al sistema No regulado de energía.
- 3.2 El montaje de la medida indirecta se puede hacer en estructuras tipo poste o en celdas ubicadas en un cuarto eléctrico.
- 3.3 Todos los elementos que conformen el sistema de medición medidores, transformadores de medición, conductores, borneras de pruebas, cajas y tableros, tubería conduit deben contar con un certificado de conformidad de producto.
- 3.4 La caída de tensión entre la salida delos devanados secundarios de los transformadores de tensión y el medidor no debe superar 0,1%.

ELECTROHUILA S.A.E.S.P.		MEDICIÓN IN MONTAJE EN	EH – STI -004	
Elaboró:	Revisó:	Aprobó:	Fecha de Aprobación:	Página:
ACIEM CAPÍTULO HUILA	NJEC	COMITÉ TÉCNICO	23-12-2016	1 de 5

- 3.5 Las señales de tensión deben tomarse de un devanado independiente para medición.
- 3.6 De acuerdo a la resolución CREG 038 de 2014, los puntos de medición se clasifican acorde con el consumo o transferencia de energía por la frontera, o, por la capacidad instalada en el punto de conexión, según la siguiente tabla:

Tipo de puntos de medición	Consumo o transferencia de energía, C, [MWh-mes]	Capacidad Instalada, CI, [MVA]
1	C ≥ 15.000	CI ≥ 30
2	15.000 > C ≥ 500	30 > CI ≥ 1
3	$500 > C \ge 50$	$1 > CI \ge 0,1$
4	50 > C ≥ 5	$0.1 > CI \ge 0.01$
5	C < 5	CI < 0,01

3.7 De acuerdo a la resolución CREG 038 de 2014, los medidores, transformadores de medida, en caso de que estos sean utilizados, y los que se adicionen o remplacen en los sistemas de medición existentes deben cumplir con los índices de clase, clase de exactitud:

Tipo de puntos	Índice de clase	Índice de clase	Clase de	Clase de
de medición	para medidores	para medidores	exactitud para	exactitud
	de energía activa	de energía	transformadores	transformadores
		reactiva	de corriente	de tensión
1	0,2 S	2	0,2 S	0,2
2 y 3	0,5 S	2	0,5 S	0,2
4	1	2	0,5	0,5
5	1 o 2	2 o 3	-	-

- 3.8 Los puntos de medición tipos 1 y 2 deben contar con un medidor de respaldo para las mediciones de energía activa y de energía reactiva. Para la medición de energía reactiva, el medidor puede estar integrado con el de energía activa.
- 3.9 En los puntos de medición en los que se presenten o se prevean flujos de energía en ambos sentidos se deben instalar medidores bidireccionales para determinar de forma independiente el flujo en cada sentido.

ELECTROHUILA S.A E.S.P.			MEDICIÓN IN MONTAJE EN	EH – STI -004	
Elaboró:	Rev	visó:	Aprobó:	Fecha de Aprobación:	Página:
ACIEM CAPÍTULO HUILA	NJ	EC	COMITÉ TÉCNICO	23-12-2016	2 de 5

4. Medidor

- 4.1 El medidor debe instalarse en una celda ubicada en patio o al interior de un cuarto eléctrico la cual debe ser tipo intemperie si queda expuesta a condiciones de sol, lluvia o polvo. En todo caso los encerramientos deben tener un grado de protección de acuerdo al ambiente en donde se instalen.
- 4.2 El medidor debe instalarse en un compartimento exclusivo e independiente.
- 4.3 La conexión de las señales de corriente provenientes de los devanados secundarios de los TCs y de las señales de tensión provenientes de la acometida, al medidor, debe realizarse mediante una bornera o bloque de pruebas, excepto para aquellos medidores que tienen incorporado un mecanismo similar a éste.

5. Instalación en celda

- 7.1 La celda debe tener certificado de producto para su uso.
- 7.2 Los transformadores de tensión y corriente deben instalarse en una celda exclusiva e independiente.

6. Selección de los transformadores de corriente

6.1 Corriente primaria nominal

El valor de la corriente a plena carga en el sistema eléctrico al cual está conectado el transformador de corriente, esté comprendida entre el 80 % de la corriente nominal y la corriente nominal multiplicada por el factor de cargabilidad del transformador de corriente:

$$0.8 \text{ Ipn} \leq \text{Ipc} \leq \text{Ipn x FC}$$

Ipc = es la corriente a plena carga del sistema eléctrico en el punto donde será conectado el transformador de corriente.

Ipn = es la corriente primaria nominal del transformador de corriente seleccionado.

FC= es el factor de cargabilidad del transformador de corriente.

6.2 Corriente secundaria nominal

El valor normalizado de corriente secundaria nominal es 5 A.

ELECTROHUILA S.A.E.S.P.			MEDICIÓN IN MONTAJE EN	EH – STI -004	
Elaboró:	Rev	visó:	Aprobó:	Fecha de Aprobación:	Página:
ACIEM CAPÍTULO HUILA	NJ	EC	COMITÉ TÉCNICO	23-12-2016	3 de 5

6.3 Carga nominal

- 6.3.1 La carga nominal (*Burden*) del transformador de corriente debe seleccionarse de tal forma que la carga real del circuito secundario (incluyendo los cables de conexión del transformador al medidor) esté comprendida entre el 25 % y el 100 % de su valor.
- 6.3.2 Para el cálculo del Burden, se debe tener en cuenta la carga introducida por los cables de conexión entre los devanados secundarios del transformador de corriente hasta el medidor.
- 6.3.2 Para el cálculo del Burden, se debe tener en cuenta la carga introducida por el tipo de medidor utilizado; valores de 12.5 VA son comunes para el caso de medidores electrónicos.

6.4 Corriente térmica nominal de corta duración (Ith)

La corriente térmica nominal de corta duración (Ith) deberá seleccionarse de tal forma que:

$$I_{th} \ge I_{cc} \times t^{1/2}$$

Icc = corriente máxima de cortocircuito en el punto del sistema donde va a ser conectado.
t= tiempo de duración del cortocircuito en segundos.

6.5 Corriente dinámica nominal (Idyn)

La corriente dinámica nominal (*Idyn*) debe ser como mínimo 2,5 veces la corriente térmica nominal de corta duración (*Ith*); es decir:

$$I_{dyn} \ge 2.5 \text{ x } I_{th}$$

7. Selección de transformadores de tensión

7.1 Tensión primaria nominal

La tensión primaria nominal de un transformador de tensión debe corresponder a la tensión nominal del sistema eléctrico al cual va a ser conectado.

7.2 Tensión secundaria nominal

La tensión secundaria nominal del transformador de tensión debe corresponder a los rangos de operación del medidor conectado a éste.

ELECTROHUILA S.A.E.S.P.		MEDICIÓN IN MONTAJE EN	EH – STI -004	
Elaboró:	Revisó:	Aprobó:	Fecha de Aprobación:	Página:
ACIEM CAPÍTULO HUILA	NJEC	COMITÉ TÉCNICO	23-12-2016	4 de 5

La tensión secundaria nominal normalizada es 120 V. Otras tensiones secundarias tales como 110 V, y 115 V podrán ser utilizadas cuando se utilizan medidores multirango de tensión.

7.3 Relación de transformación

La relación de transformación debe ser un número entero o en su defecto tener máximo un dígito decimal.

7.4 Carga nominal

- 7.4.1 La carga nominal (*Burden*) de los transformadores de tensión debe seleccionarse de tal forma que la carga real del circuito secundario (incluyendo los cables de conexión del transformador al medidor) esté comprendida entre el 25 % y el 100 % de su valor.
- 7.4.2 Un valor típico de carga aportada por los medidores al Burden de transformadores de tensión es 15 VA.
- 7.4.3 Se debe tener en cuenta la carga aportada por cada medidor cuando se utilicen medidores principal y de respaldo en serie.

8. Bibiografía

- 8.1 Reglamento Técnico de Instalaciones Eléctricas RETIE-.
- 8.2 Resolución 038 de 2014 de Comisión de Regulación de Energía y Gas.
- 8.3 Norma RA-030 Rev. De Empresas Públicas de Medellín EPM-.

ELECTROHUILA S.A.E.S.P.		MEDICIÓN IN MONTAJE EI	EH – STI -004	
Elaboró:	Revisó:	Aprobó:	Fecha de Aprobación:	Página:
ACIEM CAPÍTULO HUILA	NJEC	COMITÉ TÉCNICO	23-12-2016	5 de 5